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Abstract. This paper introduces deep induction, and shows that it is
the notion of induction most appropriate to nested types and other data
types defined over, or mutually recursively with, (other) such types. Stan-
dard induction rules induct over only the top-level structure of data,
leaving any data internal to the top-level structure untouched. By con-
trast, deep induction rules induct over all of the structured data present.
We give a grammar generating a robust class of nested types (and thus
ADTs), and develop a fundamental theory of deep induction for them
using their recently defined semantics as fixed points of accessible func-
tors on locally presentable categories. We then use our theory to derive
deep induction rules for some common ADTs and nested types, and
show how these rules specialize to give the standard structural induction
rules for these types. We also show how deep induction specializes to
solve the long-standing problem of deriving principled and practically
useful structural induction rules for bushes and other truly nested types.
Overall, deep induction opens the way to making induction principles
appropriate to richly structured data types available in programming
languages and proof assistants. Agda implementations of our develop-
ment and examples, including two extended case studies, are available.

1 Introduction

This paper is concerned with the problem of inductive reasoning about induc-
tive data types that are defined over, or are defined mutually recursively with,
(other) such data types. Examples of such deep data types include, trivially, ordi-
nary algebraic data types (ADTs), such as list and tree types; data types, such
as the forest type, whose recursive occurrences appear below other type con-
structors; simple nested types, such as the type of perfect trees, whose recursive
occurrences never appear below their own type constructors; truly1 nested types,
such as the type of bushes (also called bootstrapped heaps by Okasaki [16]), whose
recursive occurrences do appear below their own type constructors; and GADTs.
Proof assistants, including Coq and Agda, currently provide insufficient support
for performing induction over deep data types. The induction rules, if any, they
generate for such types induct over only their top-level structures, leaving any
data internal to the top-level structure untouched. This paper develops a prin-
ciple that, by contrast, inducts over all of the structured data present. We call
this principle deep induction. Deep induction not only provides general support
for solving problems that previously had only (usually quite painful and) ad
hoc solutions, but also opens the way for incorporating automatic generation of
useful induction rules for deep data types into proof assistants.

1 Nested types that are defined over themselves are known as truly nested types.
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To illustrate the difference between structural induction and deep induction,
note that the data inside a structure of type List a = Nil | Cons a (List a) is
treated monolithically (i.e., ignored) by the structural induction rule for lists:

∀(a : Set) (P : List a→ Set)→ P Nil→
(∀ (x : a) (xs : List a)→ P xs→ P (Cons x xs))→ ∀ (xs : List a)→ P xs

By contrast, the deep induction rule for lists traverses not just the outer list
structure with a predicate P, but also each data element of that list with a
custom predicate Q:

∀ (a : Set) (P : List a→ Set) (Q : a→ Set)→
P Nil→ (∀(x : a) (xs : List a)→ Q x→ P xs→ P (Cons x xs))→
∀(xs : List a)→ List∧ Q xs→ P xs

Here, List∧ lifts its argument predicate Q on data of type a to a predicate on
data of type List a asserting that Q holds for every element of its argument list.
The structural induction rule for lists is, like that for any ADT, recovered by
taking the custom predicate in the corresponding deep rule to be λx. True.

A particular advantage of deep induction is that it obviates the need to reflect
properties as data types. For example, although the set of primes cannot be de-
fined by an ADT, the primeness predicate Prime on the ADT of natural numbers
can be lifted to a predicate List∧ Prime characterizing lists of primes. Properties
can then be proved for lists of primes using the following deep induction rule:

∀(P : List Nat→ Set)→ P Nil→
(∀(x : Nat) (xs : List Nat)→ Prime x→ P xs→ P (Cons x xs))→
∀(xs : List Nat)→ List∧ Prime xs→ P xs

As we’ll see in Sections 3, 4, and 5, the extra flexibility afforded by lifting predi-
cates like Q and Prime on data internal to a structure makes it possible to derive
useful induction principles for more complex types, such as truly nested ones.

In each of the above examples, a predicate on the data is lifted to a predicate
on the list. This is an example of lifting a predicate on a type in a non-recursive
position of an ADT’s definition to the entire ADT. However, the predicate to
be lifted can also be on the type in a recursive position of a definition — i.e., on
the ADT being defined itself — and this ADT can appear below another type
constructor in the definition. This is exactly the situation for the ADT Forest a,
which appears below the type constructor List in the definition

Forest a = FEmpty | FNode a (List (Forest a))

The induction rule Coq generates for forests is

∀ (a : Set) (P : Forest a→ Set)→ P FEmpty→
(∀ (x : a) (ts : List (Forest a))→ P (FNode x ts))→ ∀ (x : Forest a)→ P x

However, this is neither the induction rule we intuitively expect, nor is it expres-
sive enough to prove even basic properties of forests that ought to be amenable
to inductive proof. The approach of [11,12] does give the expected rule2

2 This is equivalent to the rule as classically stated in Coq/Isabelle/HOL.
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∀ (a : Set) (P : Forest a→ Set)→ P FEmpty→
(∀ (x : a) (ts : List (Forest a))→ (∀ (k < length ts)→ P (ts!!k))
→ P (FNode x ts))→ ∀ (x : Forest a)→ P x

But to derive it, a technique based on list positions is used to propagate the
predicate to be proved over the list of forests that is the second argument to the
data constructor FNode. Unfortunately, this technique does not obviously extend
to other deep data types, including the type of “generalized forests” introduced
in Section 4.4 below, which combines smaller generalized forests into larger ones
using a type constructor f potentially different from List. Nevertheless, replac-
ing ∀ (k < length ts)→ P (ts!!k) in the expected rule with List∧ P ts, which is
equivalent, reveals that it is nothing more than the special case for Q = λx. True
of the following deep induction rule for Forest a:

∀ (a : Set) (P : Forest a→ Set) (Q : a→ Set)→ P FEmpty→
(∀ (x : a) (ts : List (Forest a))→ Q x→ List∧ P ts→ P (FNode x ts))→
∀ (x : Forest a)→ Forest∧ Q x→ P x

When types, like Forest a and List (Forest a) above, are defined by mutual
recursion, their (deep) induction rules are defined by mutual recursion as well.
For example, the induction rules for the ADTs

data Expr = Lit Nat | Add Expr Expr | If BExpr Expr Expr
data BExpr = BLit Bool | And BExpr BExpr | Not BExpr | Equal Expr Expr

of integer and boolean expressions are defined by mutual recursion as

∀(P : Expr→ Set) (Q : BExpr→ Set)→
(∀(n : Nat)→ P (Lit n))→
(∀(e1 : Expr) (e2 : Expr)→ P e1→ P e2→ P (Add e1 e2))→
(∀(b : BExpr) (e1 : Expr) (e2 : Expr)→ Q b→ P e1→ P e2→ P (If b e1 e2))→
(∀(b : Bool). Q (BLit b))→
(∀(b1 : BExpr) (b2 : BExpr)→ Q b1→ Q b2→ Q (And b1 b2))→
(∀(b : BExpr)→ Q b→ Q (Not b))→
(∀(e1 : Expr) (e2 : Expr)→ P e1→ P e2→ Q (Equal e1 e2))→
(∀(e : Expr)→ P e) × (∀(b : BExpr)→ Q b)

2 The Key Idea

As the examples of the previous section suggest, the key to deriving deep induc-
tion rules from (deep) data type declarations is to parameterize the induction
rules not just over a predicate over the top-level data type being defined, but over
predicates on the types of primitive data they contain as well. These additional
predicates are then lifted to predicates on any internal structures containing
these data, and the resulting predicates on these internal structures are lifted to
predicates on any internal structures containing structures at the previous level,
and so on, until the internal structures at all levels of the data type definition,
including the top level, have been so processed. Satisfaction of a predicate by
the data at one level of a structure is then conditioned upon satisfaction of the
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appropriate predicates by all of the data at the preceding level.
The above deep induction rules were all obtained using this technique. For

example, the deep induction rule for lists is derived by first noting that struc-
tures of type List a contain only data of type a, so that only one additional
predicate parameter, which we called Q above, is needed. Then, since the only
data structure internal to the type List a is List a itself, Q need only be lifted
to lists containing data of type a. This is exactly what List∧ Q does. Finally,
the deep induction rule for lists is obtained by parameterizing the standard one
over not just P but also Q, adding the additional hypothesis Q x to its second
antecedent, and adding the additional hypothesis List∧ Q xs to its conclusion.

The deep induction rule for forests is similarly obtained from the Coq-
generated rule by first parameterizing over an additional predicate Q on the
type a of data stored in the forest, then lifting P to a predicate on lists contain-
ing data of type Forest a and Q to forests containing data of type a, and, finally,
adding the additional hypotheses Q x and List∧ P ts to its second antecedent
and the additional hypothesis Forest∧ Q x to its conclusion.

Predicate liftings such as List∧ and Forest∧ may either be supplied as prim-
itives, or be generated automatically from the definitions of the types themselves,
as described in Section 4. For container types, lifting a predicate amounts to
traversing the container and applying the argument predicate pointwise.

Our technique for deriving deep induction rules for ADTs, as well as its gen-
eralization to nested types given in Section 3, is both made precise and rigorously
justified in Section 4 using the results of [13]. This paper can thus be seen as a
concrete application, in the specific category Fam, of the very general semantics
developed in [13]; indeed, our induction rules are computed as the interpreta-
tions of the syntax for nested types in Fam. A general methodology is extracted
in Section 5. The rest of this paper can be read either as “just” describing how to
generate deep induction rules in practice, or as also proving that our technique
for doing so is provably correct and general. Our Agda code is at [14].

3 Extending to Nested Types

Appropriately generalizing the basic technique of Section 2 derives deep induc-
tion rules, and therefore structural induction rules, for nested types, including
truly nested types and other deep nested types. Nested types generalize ADTs
by allowing elements at one instance of a data type to depend on data at other
instances of the same type so that, in effect, the entire family of instances is
constructed simultaneously. That is, rather than defining standalone families of
inductive types, one for each choice of types to which type constructors like List

and Tree are applied, the type constructors for nested types define inductive
families of types. The structural induction rule for a nested type must therefore
account for its changing type parameters by parameterizing over an appropri-
ately polymorphic predicate, and appropriately instantiating that predicate’s
type argument at each application site. For example, the structural induction
rule for the nested type

PTree a = PLeaf a | PNode (PTree (a× a))
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of perfect trees is

∀ (P : ∀ (a : Set)→ PTree a→ Set)→
(∀ (a : Set) (x : a)→ P a (PLeaf x))→
(∀ (a : Set) (x : PTree (a× a))→ P (a× a) x→ P a (PNode x))→
∀ (a : Set) (x : PTree a)→ P a x

and the structural induction rule for the nested type

data Lam a where

Var :: a→ Lam a

App :: Lam a→ Lam a→ Lam a

Abs :: Lam (Maybe a)→ Lam a

of de Bruijn encoded lambda terms [9] with variables of type a is

∀(P : ∀(a : Set)→ Lam a→ Set)→
(∀(a : Set) (x : a)→ P a (Var x))→
(∀(a : Set) (x : Lam a) (y : Lam a)→ P a x→ P a y→ P a (App x y))→
(∀(a : Set) (x : Lam (Maybe a))→ P (Maybe a) x→ P a (Abs x))→
∀(a : Set) (x : Lam a)→ P a x

Deep induction rules for nested types must similarly account for their type con-
structors’ changing type parameters while also parameterizing over the addi-
tional predicate on the type of data they contain. Letting Pair∧ Q be the lifting
of a predicate Q on a to pairs of type a× a, so that Pair∧ Q (x, y) = Q x× Q y,
this gives the deep induction rule

∀ (P : ∀ (a : Set)→ (a→ Set)→ PTree a→ Set)→
(∀ (a : Set) (Q : a→ Set) (x : a)→ Q x→ P a Q (PLeaf x))→
(∀ (a : Set) (Q : a→ Set) (x : PTree (a× a))→ P (a× a) (Pair∧ Q) x→

P a Q (PNode x))→
∀ (a : Set) (Q : a→ Set) (x : PTree a)→ PTree∧ Q x→ P a Q x

for perfect trees, and the deep induction rule

∀(P : ∀(a : Set)→ (a→ Set)→ Lam a→ Set)→
(∀(a : Set) (Q : a→ Set) (x : a)→ Q x→ P a Q (Var x))→
(∀(a : Set) (Q : a→ Set) (x : Lam a) (y : Lam a)→ P a Q x→ P a Q y→

P a Q (App x y))→
(∀(a : Set) (Q : a→ Set) (x : Lam (Maybe a))→ P (Maybe a) (Maybe∧ Q) x→

P a Q (Abs x))→
∀(a : Set) (Q : a→ Set) (x : Lam a)→ Lam∧ Q x→ P a Q x

for lambda terms. As usual, the structural induction rules for these types can be
recovered by setting Q = λx. True in their deep induction rules. Moreover, the
basic technique described in Section 2 can be recovered from the more general
one described in this section by noting that the type arguments to ADT data
type constructors don’t change, and that the internal predicate parameter to P

can therefore be lifted to the outermost level of ADT induction rules.
We conclude this section by giving both structural and deep induction rules
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for the following truly nested type of bushes [8]:

Bush a = BNil | BCons a (Bush (Bush a))

(Note that this type is not even definable in Agda.) Correct and useful structural
induction rules for bushes and other truly nested types have long been elusive.
One recent effort to derive such rules has been recorded in [10], but the approach
taken there is more ad hoc than not, and generates induction rules for data types
related to the nested types of interest rather than for the original nested types
themselves. To treat bushes, for example, Fu and Selinger rewrite the type Bush a
as NBush (Succ Zero) a, where NBush = NTimes Bush and

NTimes :: (Set→ Set)→ Nat→ Set→ Set
NTimes p Zero s = s

NTimes p (Succ n) s = p (NTimes p n s)

Their induction rule for bushes is then given in terms of these rewritten ones as

∀ (a : Set) (P : ∀ (n : Nat)→ NBush n a→ Set)→
(∀ (x : a)→ P Zero x)→
(∀ (n : Nat)→ P (Succ n) BNil)→
(∀ (n : Nat) (x : NBush n a) (xs : NBush (Succ (Succ n)) a)→

P n x→ P (Succ (Succ n)) xs→ P (Succ n) (BCons x xs))→
∀ (n : Nat) (xs : NBush n a)→ P n xs

This approach appears promising, but is not yet fully mature. The core diffi-
culty is that, although Fu and Selinger “hint at how the construction ... can
be generalized to arbitrary nested types” and “give an example of nested data
type [sic] that is hopefully general enough to make it clear what one would do
in the general case” in Section 5 of [10], they do not show how to derive their
induction rules in a uniform and principled way even for the “reasonably arbi-
trary and general” nested types they consider. As a result, it is unclear what
guarantees that the induction rules they derive are correct, either for the original
nested types or for their rewritten versions, or whether the induction rules for
the rewritten nested types are sufficiently expressive to prove all results about
the original nested types that one would expect to be provable by induction.
This latter point echoes the issue with Coq-derived induction rules for forests
mentioned above, and has the unfortunate effect of forcing users to manually
write induction (and other) rules for such types for use in that system [17].

Direct application of the general technique illustrated above and explicated
in full in Section 4 below derives the following first-ever useful induction rule for
bushes, respectively — a full 20 years after they were first introduced!

∀(P : ∀(a : Set)→ Bush a→ Set)→
(∀(a : Set)→ P a BNil)→
(∀(a : Set) (x : a) (y : Bush (Bush a))→ P (Bush a) y→ P a (BCons x y))→
∀(a : Set) (x : Bush a)→ P a x
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In the next section we will see that this rule is derivable from the following
more general one:

∀ (P : ∀ (a : Set)→ (a→ Set)→ Bush a→ Set)→
(∀ (a : Set) (Q : a→ Set)→ P a Q Bnil)→
(∀ (a : Set) (Q : a→ Set) (x : a) (y : Bush (Bush a))→

Q x→ P (Bush a) (P a Q) y→ P a Q (BCons x y))→
∀ (a : Set) (Q : a→ Set) (x : Bush a)→ Bush∧ Q x→ P a Q x

4 Theoretical Foundations

This section gives a grammar generating a robust class of nested types, including
ADTs and truly nested types, and recaps the semantics given in [13] for them
from which we derive their deep induction rules. This entire paper can thus be
read as a practical application of the abstract results of [13].

4.1 Categorical Preliminaries

We write a : A if A is category and a is an object of A. We write 0A and 1A
for the initial and terminal objects of A, and oA and !A for the unique maps
oA : 0A → A and !A : A→ 1A, respectively. If A is the category Set of sets and
functions between them, we write 0 for 0Set, i.e., for ∅, and 1 for any 1-element
set, i.e., for 1Set. If a : A we write Ka for the constantly a-valued functor on A.
The category Fam, which we will use to interpret predicates, is given by:

Definition 1. The category Fam comprises the following:

– Objects: An object of Fam is a pair (A,P ) where A : Set and P : A→ Set.
– Morphisms: A morphism f : (A,P ) → (A′, P ′) in Fam is a pair (α, β),

where α : A→ A′ and β : Πa:A Pa→ P ′(αa).
– Identities: The identity morphism id (A,P ) : (A,P ) → (A,P ) in Fam is

(idA, λa : A. idPa).
– Composition: If (α, β) : (A,P )→ (A′, P ′) and (α′, β′) : (A′, P ′)→ (A′′, P ′′),

then the composition (α′, β′) ◦ (α, β) : (A,P ) → (A′′, P ′′) in Fam is defined
by (α′, β′) ◦ (α, β) = (α′ ◦ α, λa : A. β′(αa) ◦ βa).

4.2 Syntax and Semantics of ADTs

If V is a countable set of type variables, V ⊆ V is finite, α ∈ V , and we write
V, α for V ∪ {α}, then the following grammar generates (representations of) all
standard polynomial ADTs over V , i.e., all ADTs defined over data of primitive
types:

AV := 0 | 1 | α ∈ V | AV +AV | AV ×AV | µα.AV,α

The grammar A =
⋃
V AV also generates (representations of) deep ADTs, i.e.,

ADTs defined not just over data of the primitive types, but over data of other
ADTs as well. For example, it generates the representation List α := µβ. 1+α×β
of the type List a, the representation Forest α := µβ. 1+α×µγ. 1+β×γ of the
type Forest a, and the representation µδ. 1+(µβ. 1+α×µγ. 1+β×γ)×δ of the
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type List (Forest a). Using Bekič’s Lemma, it can also generate (representations
of) ADTs defined by mutual recursion such as Expr := µα. s(α, µβ. t(α, β)) and
BExpr := µβ. t(Expr , β), where s(α, β) := Nat + α × α + β × α × α and
t(α, β) := Bool + β × β + β + α × α for the ADTs of integer and boolean
expressions from Section 1. ADTs with more than one type argument can be
handled by tupling them into one or, equivalently, by noting that such ADTs
are generated by the extension N of the grammar A given in Section 4.4. We
adopt the usual conventions regarding free and bound type variables for A.

As usual, ADTs are interpreted relative to environments.

Definition 2. A set environment σ is a function from a finite subset V of V
to Set. We write EnvSetV for the set of set environments whose domain is V . If
A ∈ Set, σ ∈ EnvSetV , and α 6∈ V , then σ[α := A] is the set environment with
domain V, α that extends σ by mapping α to A. We write σα in place of σ(α)
for the image of α under σ, and [] for the set environment with domain V = ∅.

It is well-known that the ADTs generated by the grammar A have initial
algebra semantics in the category Set. That is, each such ADT µα.E can be
interpreted as the carrier µF of the initial algebra for the polynomial endofunctor
F on Set that interprets its body E. In particular, the final clause of the next
definition is well-defined.

Definition 3. The interpretation function J·KSet : AV → EnvSetV → Set is:

J0KSetσ = 0
J1KSetσ = 1
JαKSetσ = ασ

JE1 + E2KSetσ = JE1KSetσ + JE2KSetσ
JE1 × E2KSetσ = JE1KSetσ × JE2KSetσ

Jµα.EKSetσ = µ(A 7→ JEKSetσ[α := A])

Like Set, the category Fam has sufficient structure to interpret ADTs gener-
ated by the grammar A. In particular, it interprets bodies of polynomial ADTs.

Definition 4. The category Fam supports the following constructions:

– Initial object: The initial object 0 of Fam is (0,K0 : 0→ Set). For (A,P ) :
Fam, (oA, λx : 0. oP (oAx)) : 0→ (A,P ) is the unique map from 0 to (A,P ).

– Terminal object: The terminal object 1 of Fam is (1,K1 : 1→ Set), where
() is the unique element of the set 1 and K1() = 1. For (A,P ) : Fam,
(!A, λa : A. !Pa) : (A,P )→ 1 is the unique map from (A,P ) to 1.

– Coproducts: Given (A,P ), (A′, P ′) : Fam, the coproduct (A,P ) + (A′, P ′) :
Fam is (A + A′, P + P ′), where P + P ′ : A + A′ → Set is just the usual
coproduct of P and P ′ as functions. The associated injections inL : (A,P )→
(A,P ) + (A′, P ′) and inR : (A′, P ′) → (A,P ) + (A′, P ′) are given by inL =
(inL, λa : A. idPa) and inR = (inR, λa′ : A′. idP ′a′). The coproduct (α, β) +
(α′, β′) : (A,P ) + (A′, P ′) → (B,Q) of morphisms (α, β) : (A,P ) → (B,Q)
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and (α′, β′) : (A′, P ′)→ (B,Q) is (α+α′, δ), where δ : Πx∈A+A′(P+P ′)x→
Q((α + α′)x) is defined by δ(inL a) = βa and δ(inR a′) = β′a′. As expected,
((α, β) + (α′, β′)) ◦ inL = (α, β) and ((α, β) + (α′, β′)) ◦ inR = (α′, β′).

– Products: Given (A,P ), (A′, P ′) : Fam, the product (A,P )× (A′, P ′) : Fam
is (A × A′, λ(a, a′) : A × A′. Pa × P ′a′). The associated projections π1 :
(A,P )× (A′, P ′) → (A,P ) and π2 : (A,P )× (A′, P ′) → (A′, P ′) are given
by π1 = (π1, λ(a, a′) : A × A′. π1) and π2 = (π2, λ(a, a′) : A × A′. π2). The
product (α, β)× (α′, β′) : (A,P ) → (B,Q)× (B′, Q′) of morphisms (α, β) :
(A,P ) → (B,Q) and (α′, β′) : (A,P ) → (B′, Q′) is (λa : A.(αa, α′a), λa :
A. λx : Pa. (βax, β′ax)). As expected, π1 ◦ ((α, β)× (α′, β′)) = (α, β) and
π2 ◦ ((α, β)× (α′, β′)) = (α′, β′).

To interpret ADTs generated by A in Fam we also need to be able to interpret
expressions of the form µα.E. This we do by computing the least fixed point in
Fam of the functor G : Fam → Fam interpreting E. It is natural to try to do
this using the same technique in Fam that gives its Set-interpretation, i.e., by
iterating G ω-many times starting from the initial object 0 of Fam. This gives
the least fixed point µG of G as the colimit Gω0 in Fam of the sequence

0 ↪→ G0 ↪→ G20 ↪→ ... ↪→ Gn0 ↪→ ... (*)

This approach is indeed viable, and is formally justified by [13]. There, it is
shown that if λ is a regular cardinal, C is a locally λ-presentable category, and
G : C → C is a λ-accessible functor drawn from a particular class of functors
that goes far beyond just first-order polynomial ones, then the least fixed point
µG of G exists in C and can be computed as the transfinite colimit Gλ0 of the

sequence 0 ↪→ G0 ↪→ G20 ↪→ ... ↪→ Gn0 ↪→ ... ↪→ Gω0 ↪→ ... ↪→ Gα0 ↪→ ... over
all α < λ. That the sequence (*) computes µG for all polynomial functors on
Fam then follows by taking λ to be ω, noting that Fam is locally ω-presentable,
and recalling that all such functors are ω-accessible. That (*) further computes
µG for every functor G on Fam that interprets an expression generated by A
now follows easily by structural induction. We record this as:

Theorem 1. If G : Fam → Fam is a functor interpreting an expression (with
a distinguished variable) generated by the grammar A, then the least fixed point
µG of G (with respect to that variable) is Gω0. Concretely, the colimit Gω0 can
be computed as lim−→n∈N

(An, Pn) = (A,P ), where A = lim−→n∈N
An with mediating

morphisms αn : An → A, and P is defined by P x = lim−→n∈N,y∈α−1
n (x)

Pn y.

To define interpretations in Fam for ADTs generated by A we need the following
analogue of Definition 2:

Definition 5. A predicate environment ρ is a function from a finite subset V of
V to Fam. We write EnvFamV for the set of predicate environments whose domain
is V . If (A,P ) ∈ Fam, ρ ∈ EnvFamV , and α 6∈ V , we write ρ[α := (A,P )] for the
predicate environment with domain V, α that extends ρ by mapping α to (A,P ).
We write αρ in place of ρ(α) for the image of α under ρ.

Let σ ∈ EnvSetV . If ρ ∈ EnvFamV is such that π1(αρ) = ασ for all α ∈ V then
we say that ρ is a lifting of σ. We write σ for the particular lifting ρ of σ such
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that αρ = (ασ,K1) for all α ∈ V . In addition, if ρ ∈ EnvFamV maps each α ∈ V
to (Aα, Pα) then we write π1ρ for the set environment with domain V mapping
each α ∈ V to Aα. We write [] for the unique environment with domain V = ∅.

We then have the following Fam-interpretations for ADTs generated by A:

Definition 6. The interpretation function J·KFam : AV → EnvFamV → Fam is:

J0KFamρ = 0
J1KFamρ = 1
JαKFamρ = αρ

JE1 + E2KFamρ = JE1KFamρ+ JE2KFamρ
JE1 × E2KFamρ = JE1KFamρ× JE2KFamρ

Jµα.EKFamρ = µ(Z 7→ JEKFamρ[α := Z])

Before showing how to derive induction rules for the ADTs generated by A we
prove two crucial lemmas linking their Set- and Fam-interpretations.

Lemma 1. If E ∈ AV and ρ ∈ EnvFamV , then π1(JEKFamρ) = JEKSet(π1ρ). Fur-
thermore, if π2(βρ) = K1 for all β ∈ V , then π2(JEKFamρ) = K1.

Proof. By induction on the structure of expressions. The only non-trivial case
is for µα.E ∈ AV . Let ρ ∈ EnvFamV be given. Letting F : Set → Set be defined
by FA = JEKSet(π1ρ)[α := A] and G : Fam → Fam be defined by G(A,Q) =
JEKFamρ[α := (A,Q)], the induction hypothesis gives

π1(G(A,Q)) = π1(JEKFamρ[α := (A,Q)]) = JEKSet(π1ρ)[α := A] = FA (†)

and if π2(βρ) = K1 for all β ∈ V then, moreover, π2(G(A,K1)) = K1. We then
have π1(Jµα.EKFamρ) = π1(µ((A,Q) 7→ JEKFamρ[α := (A,Q)])) = π1(µG) =

π1(lim−→n∈N
Gn0) = lim−→n∈N

π1(Gn0) = lim−→n∈N
Fn0 = µF = µ(A 7→ JEKSet(π1ρ)[α

:= A]) = Jµα.EKSet(π1ρ). Here, the fourth equality is justified by Theorem 1,
and the fifth is justified by (†) and induction on n. If π2(βρ) = K1 for all
β ∈ V as well, then π2(Jµα.EKFamρ) = π2(µ((A,Q) 7→ JEKFamρ[α := (A,Q)])) =
π2(µG) = π2(lim−→n∈N

Gn0) = π2(lim−→n∈N
(Fn0,K1)) = λx. lim−→n∈N,y∈α−1

n x
K1y =

K1. Here, the morphisms αn : Fn0→ µF are the mediating morphisms for the
colimit, as in Theorem 1, and the fourth equality is justified by the fact that
π2(G(A,K1)) = K1 and induction on n.

Corollary 1. If E is closed then JEKFam[] = (JEKSet[],K1).

Lemma 2. If σ ∈ EnvSetV , and if F : Set → Set and G : Fam → Fam are
given by FA = JEKSetσ[α := A] and G(A,Q) = JEKFamσ[α := (A,Q)], then
µG = (µF,K1).

Proof. We have µG = µ((A,Q) 7→ JEKFamσ[α := (A,Q)]) = Jµα.EKFamσ =

(Jµα.EKSetσ,K1) = (µF,K1), where the third equality holds by Lemma 1.
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4.3 Induction Rules for ADTs

To derive induction rules for the ADTs generated by A, we first observe that,
given an ADT µα.E ∈ AV and a set environment σ ∈ EnvSetV interpreting its free
variables, the interpretation JEKSetσ defines a functor FσA = JEKSetσ[α := A]
such that Jµα.EKSetσ = µ(A 7→ JEKSetσ[α := A]) = µ(A 7→ FσA) = µFσ. We can
therefore think of Fσ as representing the data type constructor associated with
the ADT. Thus, as argued in [11,12], the semantic induction rule for proving
predicates over the σ-instance of the ADT µα.E has the form

∀(P : µFσ → Set). ???→ ∀(x : µFσ). Px

for some appropriate hypotheses ???. We can use the Fam-interpretation of E to
discover a semantic counterpart to the hypotheses ???. Reflecting the resulting
semantic rule for the σ-instance of µα.E back into the programming language
syntax will then derive induction rules for polynomial ADTs.

To deduce what ??? is, we first observe that the conclusion ∀(x : µFσ). Px
of the induction rule for the σ-instance of µα.E is isomorphic to the type of the
second component of a morphism in Fam from (µFσ,K1) to (µFσ, P ) whose first
component is id . Lemma 1 suggests that if we can see (µFσ,K1) as µG for some
functor G : Fam→ Fam, then we can fold over a G-algebra on (µFσ, P ) in Fam
to get such a morphism, i.e., to inhabit the type that is the structural induction
rule for the σ-instance of µα.E. This will provide a proof indµα.E,σ P that the
property P holds for all elements of the σ-instance of µα.E.

To this end, let ρ ∈ EnvFamV be any lifting of σ, and consider again the functor
F̂ρ(A,Q) = JEKFamρ[α := (A,Q)] on Fam given in Lemma 1 (there called G). An

F̂ρ-algebra structure on (µFσ, P ) is a morphism (k′, k) : F̂ρ(µFσ, P )→ (µFσ, P )

in Fam. Then π1(F̂ρ(µFσ, P )) = π1(JEKFamρ[α := (µFσ, P )]) = (π1(JEKFamρ))[α
:= µFσ] = JEKSetσ[α := µFσ] = Fσ(µFσ), with the third equality holding
by Lemma 1. If we take k′ = in, then k : ∀(x : Fσ(µFσ)). π2(JEKFamρ[α :=
(µFσ, P )])x→ P (in x), so that

indµα.E, ρ : ∀(P : µFσ → Set).
(∀(x : Fσ(µFσ)). π2(JEKFamρ[α := (µFσ, P )])x→ P (in x))

→ ∀(x : µFσ). Px

indµα.E, ρ P k x = π2 (foldFam
µα.E, ρ (in, k))x ()

Here, foldFam
µα.E, ρ(in, k) is the unique F̂ρ-algebra morphism from in : F̂ρ(µF̂ρ)→

µF̂ρ to (in, k) in Fam.
Taking ρ = σ in the above development derives the expected structural

induction rules for ADTs generated by A. But this development is actually
far more flexible, since the induction rule it derives is parameterized over an
arbitrary lifting ρ of the set environment σ, and later specialized to σ to obtain
structural induction rules for ADTs. The non-specialized rule can therefore be
used to prove properties of ADTs that are parameterized over non-trivial (i.e.,
non-K1) predicates on the type parameters to the type constructors induced by
those ADTs; these are precisely our deep induction rules for ADTs.
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As expected, the conclusion of an ADT’s deep induction rule will have an
additional hypothesis involving the lifting of this predicate to that ADT. As we
have seen, the ability to lift a predicate Q on a set A to a predicate TQ on TA,
where T is an ADT’s type constructor, is therefore central to deep induction.
Every type constructor for every ADT generated by the grammar A has such a
lifting. Concretely, it is computed as the second component of the interpretation
in Fam of that data type. For example, the lifting ListQ : ListA → Set is
π2Jµβ. 1 + α× βKFam[α := (A,Q)]. This can be coded in Agda as

List∧ : ∀ {a : Set} → (a→ Set)→ (List a→ Set)
List∧ Q Nil = >
List∧ Q (Cons x xs) = Q x × List∧ Q xs

Example 1. The deep induction rule for lists can be computed as the type of
indList α, ρ for the ADT List α := µβ. 1 + α× β and the predicate environment
ρ = [α := (A,Q)] for (A,Q) ∈ Fam. Letting FY = J1 + α× βKSet(π1ρ)[β :=
Y ] = 1 +A×Y with the obviously named injections, we have that µF = List A.
This gives the deep induction rule

indList α,ρ : ∀(P : µF → Set). ∀ (Q : A→ Set).
(∀(x : F (µF )). π2 (J1 + α× βKFam[α := (A,Q), β := (µF, P )])x→

P (in x))→ ∀(x : µF ).ListQ x→ P x

Simplifying π2’s argument gives (1,K1) + (A,Q)× (µF, P ). Its predicate part,
obtained by applying π2, is K1 + (Q× P ), so the hypotheses for indList α,ρ are

∀(x : 1 +A× List A).(K1 + (Q× P ))x→ P (in x)
= (∀(x : 1). 1→ P Nil)× (∀(y : A). ∀(ys : ListA). Q y → P ys→ P (Cons y ys))
= P Nil × (∀(y : A). ∀(ys : List A). Q y → P ys→ P (Cons y ys))

Reflecting back into syntax gives the deep induction rule from Section 1:

∀ (a : Set) (P : List a→ Set) (Q : a→ Set)→
P Nil→ (∀(y : a) (ys : List a)→ Q y→ P ys→ P (Cons y ys))→
∀(xs : List a)→ List∧ Q xs→ P xs

Taking Q = K1 gives the usual structural induction rule for lists from Section 1.

Example 2. Since Forest a and List (Forest a) are mutually recursively de-
fined, the deep induction rule for forests is defined by mutual recursion with
the deep induction rule for lists. It can be computed as the type of indForest α, ρ
for the ADT Forest α := µβ. α × µγ. 1 + β × γ using the same technique as in
Example 1. This gives the (deep) induction rule for forests from Section 1.

Example 3. Exactly the same technique delivers the deep induction rules from
Section 1 for the mutually recursive ADTs Expr and BExpr whose representations
are given before Definition 2.
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4.4 Syntax and Semantics of Nested Types

We can use the technique from Section 4.3 to derive induction rules for nested
types as well, including truly nested types and other deep nested types. To do
so we first need an extension of the grammar A that generates these types.

Since nested types generalize ADTs to allow elements of a nested type at one
instance of a type to depend on data at other instances of that nested type, they
are interpreted as least fixed points not of ordinary (first-order) functors on Fam,
as ADTs are, but rather as least fixed points of higher-order such functors. More-
over, since nested types can be parameterized over any number of type argu-
ments, the (first-order) functors interpreting them can have correspondingly ar-
bitrary arities. For each k ≥ 0 we therefore assume a countable set Fk of functor
variables of arity k, disjoint for distinct k. We use lower case Greek letters for
functor variables, write ϕk to indicate that ϕ ∈ Fk, and say that ϕ has arity k
in this case. Type variables are exactly functor variables of arity 0; we continue
to write α, β, etc., rather than α0, β0, etc., for them. We write F =

⋃
k≥0 Fk.

If V ⊆ F is finite and ϕ ∈ Fk for some k, write V, ϕ for V ∪ {ϕ}.

Definition 7. For a finite set V of F , the set of (truly) nested data types over
V is generated by the following grammar:

N V := 0 | 1 | ϕkN V | N V +N V | N V ×N V | (µϕk.λα1...αk.N V,α1,...,αk,ϕ)N V

Here, ϕk ∈ V and the lengths of the vectors of terms in N V in the third and
final clauses of the above grammar are both k.

The grammarN =
⋃
V N V generalizesA by allowing recursion not just at the

level of type variables, but also at the level of functor variables. This reflects the
fact that, in programming language syntax, nested types can be parameterized
over both types and type constructors. For example, N V generates the represen-
tation PTree α :=

(
µϕ1.λβ.β + ϕ(β × β)

)
α ∈ Nα of the type PTree a, the repre-

sentation Lam α :=
(
µϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1)

)
α ∈ Nα of the type Lam a

and the representation Bush α :=
(
µϕ1.λβ. 1 + β × ϕ (ϕβ)

)
α ∈ Nα of the type

Bush a. But it also generates the representation GForest ϕα := µβ. 1+α×ϕβ ∈
Nϕ,α of the following nested type of generalized forests with data of type a:

GForest f a = FEmpty | FNode a (f (GForest f a))

This type is higher-order in the sense that the type constructor GForest takes
not just a type, but also a (unary) type constructor, as an argument. It therefore
cannot be expressed as an element of A, and thus demonstrates the benefit of
working with the more expressive grammar N . On the other hand, it is decidedly
ADT-like, in the sense that it defines a family of inductive types rather than an
inductive family of types. In fact, if f were a type constructor induced by a
nested type generated by our grammar, then GForest f a and f (GForest f a)
would be mutually recursively defined. In this case, generalizing Example 2,
their structural induction rules would also be defined by mutual recursion.



14 P. Johann and A. Polonsky

It is not hard to see that A ⊆ N . Moreover, the grammar N allows nested
types to be parameterized over (other) nested data types, just as A allows ADTs
to be parameterized over (other) ADTs. For instance, we could have perfect trees
of lists or binary trees, bushes of perfect trees, etc.

We have the following notions of functor and application in Fam:

Definition 8. A (k-ary) lifted functor G : Famk → Fam is a pair (F, P ), where
F : Setk → Set and P : ∀(X1, P1)....(Xk, Pk). FX1...Xk → Set is a Fam-
indexed predicate. The application of a functor (F, P ) : Famk → Fam to an
object (A1, Q1), ...., (Ak, Qk) of Famk is given by

(F, P )(A1, Q1)...(Ak, Qk) = (FA1...Ak, P (A1, Q1)...(Ak, Qk))

We call a lifted functor G = (F, P ) a lifting of F from Set to Fam, and call P a
Fam-indexed predicate. A Set-indexed predicate is a Fam-indexed predicate that
does not depend on its arguments’ second components. We extend the notions of
set environment and predicate environment from Definitions 2 and 5 as follows:

Definition 9. A set environment σ is a mapping from a finite subset V =
{ϕk11 , ..., ϕknn } of F such that ϕiσ : Setki → Set for i = 1, ..., n. We write EnvSetV
for the set of set environments whose domain is V . If F ∈ Setk → Set, σ ∈
EnvSetV , and ϕk 6∈ V , we write σ[ϕ := F ] for the set environment with domain
V, ϕ that extends σ by mapping ϕ to F . Similarly, a predicate environment ρ is
a mapping from a finite subset V = {ϕk11 , ..., ϕknn } of F such that ϕiρ : Famki →
Fam is a lifted functor for i = 1, ..., n. We write EnvFamV for the set of predicate
environments whose domain is V . If (F, P ) ∈ Famk → Fam, ρ ∈ EnvFamV , and
ϕk 6∈ V , we write ρ[ϕ := (F, P )] for the predicate environment with domain V, ϕ
that extends ρ by mapping ϕ to (F, P ).

The notions of a predicate environment being a lifting of a set environment and
the notations σ, π1ρ, and [] are now extended in the obvious ways.

The following interpretations of nested types generated by N in the locally
finitely presentable categories Set and Fam are shown in [13] to be well-defined:
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Definition 10. The interpretation functions J·KSet : N V → EnvSetV → Set and
J·KFam : N V → EnvFamV → Fam are:

J0KSetσ = 0
J1KSetσ = 1

JϕkE1...EkKSetσ = (ϕσ)(JEiKSetσ)
JE1 + E2KSetσ = JE1KSetσ + JE2KSetσ
JE1 × E2KSetσ = JE1KSetσ × JE2KSetσ

J(µϕk.λα1...αk. E)E1...EkKSetσ = (µ(F 7→ λA1...Ak.

JEKSetσ[αi := Ai][ϕ := F ]))(JEiKSetσ)

J0KFamρ = 0
J1KFamρ = 1

JϕkE1...EkKFamρ = (ϕρ)(JEiKFamρ)
JE1 + E2KFamρ = JE1KFamρ+ JE2KFamρ
JE1 × E2KFamρ = JE1KFamρ× JE2KFamρ

J(µϕk.λα1...αk. E)E1...EkKFamρ = (µ(F 7→ λZ1...Zk.

JEKFamρ[αi := Zi][ϕ := F ]))(JEiKFamρ)

4.5 Induction Rules for Nested Types

Straightforward generalization of the analysis in Section 4.3 to N gives induc-
tion rules for the type constructors nested types induce. Given a nested type
(µϕk.λα1...αk. E)E1...Ek ∈ N V with type constructor T = µϕk.λα1...αk. E and
a set environment σ ∈ EnvSetV interpreting its free variables, we have that

JTEiKSetσ = µ(F 7→ λA1...Ak. JEKSetσ[αi := Ai][ϕ := F ])(JEiKSetσ) = (µHσ)(JEiKSetσ)

where the higher-order functor Hσ on Set is defined by

HσFA1...Ak = JEKSetσ[αi := Ai][ϕ := F ]

For any lifting ρ of σ, the predicate counterpart to Hσ is the higher-order functor
Ĥρ on Fam whose action on a k-ary lifted functor (F, P ) is the k-ary lifted functor

Ĥρ(F, P ) given by

Ĥρ (F, P ) (A1, Q1)....(Ak, Qk) = JEKFamρ[α := (Ai, Qi)][ϕ := (F, P )]

The induction rule indT, ρ for proving predicates over the σ-instance of the type
constructor T relative to the lifting ρ is thus given by

indT, ρ : ∀(P : ∀(Ai, Qi).(µHσ)Ai → Set).

(∀(Ai, Qi). π2(Ĥρ(µHσ, P ))(Ai, Qi)→ P (Ai, Qi))→
(∀(Ai, Qi). π2(µĤρ)(Ai, Qi)→ P (Ai, Qi))

= ∀(P : ∀(Ai.Qi).(µHσ)Ai → Set).

(∀(Ai, Qi). ∀(x : Hσ(µHσ)Ai).

π2(Ĥρ(µHσ, P ))(Ai, Qi)x→ P (Ai, Qi)(in x))→
(∀(Ai, Qi). ∀(x : (µHσ)Ai). π2(µĤρ)(Ai, Qi)x→ P (Ai, Qi)x)

indT, ρ = λ P k (Ai, Qi). π2(foldFam
T, ρ (in, k))
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To get analogues for nested types of the structural induction rules for ADTs
note that, since each σ-instance of the type constructor T = µϕk.λα1...αk. E
associated with a nested type (µϕk.λα1...αk.E)E1...Ek ∈ N V gives rise to an
inductive family of types, the appropriate notion of predicate for a nested type
is actually a Set-indexed predicate. By direct analogy with structural induction
for ADTs, the structural induction rule for a nested type with type constructor
T whose σ-instance is interpreted by µHσ is then

∀(P : ∀Ai.(µHσ)Ai → Set).

(∀Ai. ∀(x : Hσ(µHσ)Ai). π2(Ĥσ(µHσ, P̂ ))(Ai,K1)x→ P̂ (Ai,K1)(in x))→
(∀Ai. ∀(x : (µHσ)Ai). π2(µĤσ)(Ai,K1)x→ P̂ (Ai,K1)x)

= ∀(P : ∀Ai.(µHσ)Ai → Set).

(∀Ai.∀(x : Hσ(µHσ)Ai). π2(Ĥσ(µHσ, P̂ ))(Ai,K1)x→ P̂ (Ai,K1)(in x))→
(∀Ai. ∀(x : (µHσ)Ai). P̂Aix)

(‡)
where P̂ is defined below. To see that the structural induction rule (‡) is indeed a
specialization of indT, ρ, suppose we are given a predicate P : ∀(Ai, Qi). (µHσ)Ai
→ Set for a nested type with type constructor T whose σ-instance is interpreted
by µHσ, together with induction hypotheses

R = ∀Ai.∀(x : Hσ(µHσ)Ai). π2(Ĥσ(µHσ, P̂ ))(Ai,K1)x→ P̂ (Ai,K1)(in x)

Let P̂ : ∀(Ai, Qi). (µHσ)Ai → Set be the Fam-indexed predicate P̂ = λ(Ai, Qi).
PAi, and consider the instantiation indT, σ P̂ R̂, where the induction hypothesis

R̂ : ∀(Ai, Qi). ∀(x : Hσ(µHσ)Ai). π2(Ĥσ(µHσ, P̂ ))(Ai, Qi)x → P̂ (Ai, Qi)(in x)
for indT, σ is given by R̂ (Ai, Qi)x y = RAi x (π2(Ĥσ(µHσ, P̂ ) t)x y).

5 The General Methodology

We can distill from the foundations given in Section 4 a general methodology
that will derive correct deep induction rules for any nested type generated by
N . Concretely, this methodology comprises the following steps:

1. Given a nested data type definition D, translate its type constructor into an
expression N in the grammar N (or, more simply, A, if D defines an ADT).

2. Interpret N in Set to get a fixpoint equation defining D as µH for some
(higher-order) operator H.

3. Reinterpret N in Fam to define a corresponding (higher-order) operator Ĥ on
predicates whose fixed point µĤ is an inductive predicate on µH, i.e., on D.

4. Initiality of µĤ guarantees that there is a unique predicate morphism from
µĤ to any other predicate P admitting an Ĥ-algebra structure. This gives
D’s deep induction rule.

These are precisely the steps carried out in all of our examples, including those
below, which illustrate the derivation for nested types given in Section 4.5.
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Example 4. Since the nested type Lamα :=
(
µϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1)

)
α

of lambda terms is uniform in its index α, it induces a type constructor Lam :=
µϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1). Writing H for H[] and Ĥ for Ĥ[], and letting

H F A = Jβ + ϕβ × ϕβ + ϕ(β + 1)KSet[β := A][ϕ := F ] = A+FA×FA+F (A+1)

we have that µH = Lam and that the predicate counterpart Ĥ to H is given by

Ĥ (F, P̂ ) (A,Q) = Jβ + ϕβ × ϕβ + ϕ(β + 1)KFam[β := (A,Q)][ϕ := (F, P̂ )]

= (A,Q) + (F, P̂ )(A,Q)× (F, P̂ )(A,Q) + (F, P̂ )((A,Q) + (1,K1))
= (A+ FA× FA+ F (A+ 1),

π2((A,Q) + (F, P̂ )(A,Q)× (F, P̂ )(A,Q) + (F, P̂ )((A,Q) + (1,K1)))

Reflecting µĤ back into syntax gives the inductive predicate

Lam∧ : ∀(a : Set)→ (a→ Set)→ (Lam a→ Set) where
Var∧ : ∀(a : Set) (Q : a→ Set) (x : a)→ Q x→ Lam∧ a Q (Var x)
App∧ : ∀(a : Set) (Q : a→ Set) (x : Lam a) (y : Lam a)→ Lam∧ a Q x→

Lam∧ a Q y→ Lam∧ a Q (App x y)
Abs∧ : ∀(a : Set) (Q : a→ Set) (x : Lam a)→ Lam∧ (Maybe a) (Maybe∧ a Q) x→

Lam∧ a Q (Abs x)

Now, if P is any other predicate on Lam admitting an Ĥ-algebra structure, then
there must exist a morphism k : ∀(x : A+LamA×LamA+Lam(A+ 1)). (Q+
PAQ×PAQ+P (A+1)((+1)∧Q))x→ PAQ (in x), i.e., k = (k1, k2, k3), where

k1 : ∀(x : A). Q x→ P AQ (V ar x)
k2 : ∀(x : LamA). ∀(y : LamA). P AQx→ P AQy → P AQ (Appx y)
k3 : ∀(x : Lam (A+ 1)). P (A+ 1) ((+1)∧Q)x→ P AQ (Abs x)

Since Lam∧ reflects the initial Ĥ-algebra, there is a unique algebra morphism
from in : Ĥ(µĤ)→ µĤ to the Ĥ-algebra k on P , i.e., from µĤ to P . Reflecting
this morphism back into syntax gives the deep induction rule for lambda terms
from Section 3.

The deep induction rule for lambda terms can be used to prove, e.g., prop-
erties of lambda terms whose variables are represented by prime numbers or
lambda terms over strings that can represent variable names. It can also be used
to prove properties of lambda terms over lambda terms, such as the associativity
laws needed to show that the functor Lam is a monad; such a proof is included
as the first case study in the accompanying Agda code. The second uses deep
induction rule we derive in Example 5 to prove some results about bushes.

Since truly nested types are a special case of deep nested types, our method-
ology can derive useful induction rules for them — including the perpetually
problematic truly nested type of bushes [8,10,15] introduced in Section 3.
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Example 5. Since the truly nested type Bush α :=
(
µϕ1.λβ. 1 + β × ϕ (ϕβ)

)
α ∈

Nα is uniform in its index α, it induces a type constructor Bush := µϕ1.λβ. 1 +
β × ϕ (ϕβ). Writing H for H[] and Ĥ for Ĥ[], and letting

H F A = J1 + β × ϕ (ϕβ)KSetσ[β := A][ϕ := F ] = 1 +A× F (FA)

we have that µH = Bush and the predicate counterpart Ĥ to H is given by

Ĥ (F, P ) (A,Q) = J1 + β × ϕ (ϕβ)KFamσ[β := (A,Q)][ϕ := (F, P )]
= (1,K1) + (A,Q)× (F, P )((F, P )(A,Q))
= (1 +A× F (FA), K1 +Q× π2((F, P )((F, P )(A,Q))))

Reflecting µĤ back into syntax gives the inductive predicate

Bush∧ : ∀(a : Set)→ (a→ Set)→ (Bush a→ Set) where
BNil∧ : ∀(a : Set) (Q : a→ Set) → Bush∧ a Q BNil

BCons∧ : ∀(a : Set) (Q : a→ Set) (x : a) (y : Bush (Bush a))→
Q x→ Bush∧ (Bush a) (Bush∧ Q) x→ Bush∧ a Q (BCons x y)

Now, if P is any other predicate on Bush admitting an Ĥ-algebra structure, then
there must exist a morphism

k : ∀(x : 1 +Bush (BushA)).

(K1 +Q× π2((Bush, P̂ )((Bush, P̂ )(A,Q))))x→ PAQ (in x)
= ∀(x : 1 +Bush (BushA)). (K1 +Q× P (BushA) (PAQ))x→ PAQ (in x)

i.e., (k1, k2), where k1 : ∀(x : 1). 1 → P AQBNil and k2 : ∀(x : A). ∀(y :
Bush (BushA)). 1 → P (BushA) (PAQ) y → PAQ(BConsx y). Since Bush∧

reflects the initial Ĥ-algebra, there is a unique predicate morphism from µĤ to
P . Reflecting this morphism back into syntax gives the deep induction rule for
bushes from Section 3.

The function BDind⇒MBDind in our Agda code shows that our methodology also
derives a mutually recursive deep induction rule for bushes, there called MBDind.
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Examples 4 and 5 show that when the definition of a nested type contains an
instance of another nested type constructor C — e.g., Maybe a in the argument
Lam (Maybe a) to Abs — its inductive predicate definition, and thus its deep in-
duction rule, will involve a call to the predicate interpretation C∧ of C. When
the definition contains an instance of the constructor for the same type being
defined — e.g., Bush a in the type argument Bush (Bush a) to BCons — its induc-
tive predicate definition, and thus its deep induction rule, will involve a recursive
call to the inductive predicate being defined. The treatment of a truly nested
type is thus exactly the same as the treatment of any other nested type.

Independently of deriving induction rules, even defining some nested types in
Agda requires turning off its termination checks in a few tightly compartmental-
ized places. For example, neither Coq nor Agda currently allows the definition
of the bush data type because of the non-positive occurrence of Bush in the type
of BCons. The correctness of our development in those places is justified by [13].
This work suggests that the current notion of positivity should be generalized.

6 Related Work and Directions for Further Investigation

As far as we know, the phenomenon of deep induction has not previously even
been identified, let alone studied. This paper treats deep induction for nested
types, which extend ADTs by allowing higher-order recursion. Other general-
izations of ADTs are also well-studied in the literature, including (indexed)
containers [1,2], which extend ADTs by allowing type dependency. In partic-
ular, [3] defines a class of “nested” containers corresponding to inductive types
whose constructors can recursively depend on the data type at different instances
than the one being defined. The case of truly nested types is not treated there,
however. We hope eventually to extend the results of this paper to derive prov-
ably correct deep induction rules for (indexed) containers, GADTs, dependent
types, and other classes of more advanced data types. One interesting question
is whether or not a common generalization of indexed containers and the class
of nested types studied here has a rigorous initial algebra semantics as in [13].

A more recent line of investigation concerns sized types [5]. These are par-
ticularly well-suited to termination checking of (co)recursive definitions, and are
implemented in the latest versions of Agda [6]. Although originally defined in
the context of a type theory with higher-order functions [4], the current incar-
nation of sized types does not appear to admit definitions with true nesting.
What seems to be missing is an addition operation on sizes, which would allow
a constructor such as BCons to combine a structure with size of depth “up to α”
with one of depth “up to β” to define a data element of depth “up to α+ β”.

Tassi [17] has independently implemented a tool for deriving induction princi-
ples of data type definitions in Coq using unary parametricity. Although neither
rigorous derivation nor justification is provided, his technique seems to be essen-
tially equivalent to ours, and could perhaps be justified by our general framework.
True nesting still is not permitted, however. In [7], mutually recursively defined
induction and coinduction rules are derived for mutually recursive and corecur-
sive data types. But these are still the standard structural (co)induction rules,
rather than deep ones. This suggests a need for deep coinduction rules, too.
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